- (iii) Existence of additive identity Let $A = [a_{ij}]$ be an $m \times n$ matrix and O be an $m \times n$ zero matrix, then A + O = O + A = A. In other words, O is the additive identity for matrix addition.
- (iv) The existence of additive inverse Let $A = [a_{ij}]_{m \times n}$ be any matrix, then we have another matrix as $-A = [-a_{ij}]_{m \times n}$ such that A + (-A) = (-A) + A = O. So -A is the additive inverse of A or negative of A.

3.4.4 Properties of scalar multiplication of a matrix

If A = $[a_{ij}]$ and B = $[b_{ij}]$ be two matrices of the same order, say $m \times n$, and k and l are scalars, then

(i)
$$k(A + B) = k A + kB$$
, (ii) $(k + l)A = k A + l A$

(ii)
$$k (A + B) = k ([a_{ij}] + [b_{ij}])$$

= $k [a_{ij} + b_{ij}] = [k (a_{ij} + b_{ij})] = [(k a_{ij}) + (k b_{ij})]$
= $[k a_{ij}] + [k b_{ij}] = k [a_{ij}] + k [b_{ij}] = kA + kB$

(iii)
$$(k + l) A = (k + l) [a_{ij}]$$

= $[(k + l) a_{ij}] + [k a_{ij}] + [l a_{ij}] = k [a_{ij}] + l [a_{ij}] = k A + l A$

Example 8 If $A = \begin{bmatrix} 8 & 0 \\ 4 & -2 \\ 3 & 6 \end{bmatrix}$ and $B = \begin{bmatrix} 2 & -2 \\ 4 & 2 \\ -5 & 1 \end{bmatrix}$, then find the matrix X, such that

2A + 3X = 5B.

Solution We have 2A + 3X = 5B

- or 2A + 3X 2A = 5B 2Aor 2A - 2A + 3X = 5B - 2Aor O + 3X = 5B - 2A
- or 3X = 5B 2A

- (Matrix addition is commutative)(- 2A is the additive inverse of 2A)(O is the additive identity)
- or $X = \frac{1}{3} (5B 2A)$
- or

$$X = \frac{1}{3} \left(5 \begin{bmatrix} 2 & -2 \\ 4 & 2 \\ -5 & 1 \end{bmatrix} - 2 \begin{bmatrix} 8 & 0 \\ 4 & -2 \\ 3 & 6 \end{bmatrix} \right) = \frac{1}{3} \left(\begin{bmatrix} 10 & -10 \\ 20 & 10 \\ -25 & 5 \end{bmatrix} + \begin{bmatrix} -16 & 0 \\ -8 & 4 \\ -6 & -12 \end{bmatrix} \right)$$

20. The bookshop of a particular school has 10 dozen chemistry books, 8 dozen physics books, 10 dozen economics books. Their selling prices are ₹80, ₹60 and ₹40 each respectively. Find the total amount the bookshop will receive from selling all the books using matrix algebra.

Assume X, Y, Z, W and P are matrices of order $2 \times n$, $3 \times k$, $2 \times p$, $n \times 3$ and $p \times k$, respectively. Choose the correct answer in Exercises 21 and 22.

- **21.** The restriction on *n*, *k* and *p* so that PY + WY will be defined are:
 - (A) k = 3, p = n (B) k is arbitrary, p = 2
 - (C) *p* is arbitrary, k = 3 (D) k = 2, p = 3
- **22.** If n = p, then the order of the matrix 7X 5Z is:

(A) $p \times 2$ (B) $2 \times n$ (C) $n \times 3$ (D) $p \times n$

3.5. Transpose of a Matrix

In this section, we shall learn about transpose of a matrix and special types of matrices such as symmetric and skew symmetric matrices.

Definition 3 If $A = [a_{ij}]$ be an $m \times n$ matrix, then the matrix obtained by interchanging the rows and columns of A is called the *transpose* of A. Transpose of the matrix A is denoted by A' or (A^T). In other words, if $A = [a_{ij}]_{m \times n}$, then $A' = [a_{ij}]_{n \times m}$. For example,

if
$$A = \begin{bmatrix} 3 & 5 \\ \sqrt{3} & 1 \\ 0 & -1 \\ & 5 \end{bmatrix}_{3 \times 2}$$
, then $A' = \begin{bmatrix} 3 & \sqrt{3} & 0 \\ 5 & 1 & -1 \\ 5 & 1 & 5 \end{bmatrix}_{2 \times 3}$

3.5.1 Properties of transpose of the matrices

We now state the following properties of transpose of matrices without proof. These may be verified by taking suitable examples.

For any matrices A and B of suitable orders, we have

(i) (A')' = A, (ii) (kA)' = kA' (where k is any constant) (iii) (A + B)' = A' + B'(iv) (A B)' = B' A'

Example 20 If $A = \begin{bmatrix} 3 & \sqrt{3} & 2 \\ 4 & 2 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 2 & -1 & 2 \\ 1 & 2 & 4 \end{bmatrix}$, verify that (i) (A')' = A, (ii) (A + B)' = A' + B',

(iii) (kB)' = kB', where k is any constant.

84 MATHEMATICS

Solution

(i) We have

$$\mathbf{A} = \begin{bmatrix} 3 & \sqrt{3} & 2 \\ 4 & 2 & 0 \end{bmatrix} \Rightarrow \mathbf{A}' = \begin{bmatrix} 3 & 4 \\ \sqrt{3} & 2 \\ 2 & 0 \end{bmatrix} \Rightarrow (\mathbf{A}')' = \begin{bmatrix} 3 & \sqrt{3} & 2 \\ 4 & 2 & 0 \end{bmatrix} = \mathbf{A}$$

Thus (A')' = A

(ii) We have

$$A = \begin{bmatrix} 3 & \sqrt{3} & 2 \\ 4 & 2 & 0 \end{bmatrix}, B = \begin{bmatrix} 2 & -1 & 2 \\ 1 & 2 & 4 \end{bmatrix} \Rightarrow A + B = \begin{bmatrix} 5 & \sqrt{3} - 1 & 4 \\ 5 & 4 & 4 \end{bmatrix}$$

Therefore
$$(A + B)' = \begin{bmatrix} 5 & 5 \\ \sqrt{3} - 1 & 4 \\ 4 & 4 \end{bmatrix}$$

Now
$$A' = \begin{bmatrix} 3 & 4 \\ \sqrt{3} & 2 \\ 2 & 0 \end{bmatrix}, B' = \begin{bmatrix} 2 & 1 \\ -1 & 2 \\ 2 & 4 \end{bmatrix},$$

So
$$A' + B' = \begin{bmatrix} 5 & 5 \\ \sqrt{3} - 1 & 4 \\ 4 & 4 \end{bmatrix}$$

Thus
$$(A + B)' = A' + B'$$

Now

So

$$(\mathbf{A} + \mathbf{B})' = \mathbf{A}' + \mathbf{B}'$$

(kB)' = kB'

(iii) We have

$$k\mathbf{B} = k \begin{bmatrix} 2 & -1 & 2 \\ 1 & 2 & 4 \end{bmatrix} = \begin{bmatrix} 2k & -k & 2k \\ k & 2k & 4k \end{bmatrix}$$

$$(k\mathbf{B})' = \begin{bmatrix} 2k & k \\ -k & 2k \\ 2k & 4k \end{bmatrix} = k \begin{bmatrix} 2 & 1 \\ -1 & 2 \\ 2 & 4 \end{bmatrix} = k\mathbf{B}'$$

Thus

2021-22

Example 21 If
$$A = \begin{bmatrix} -2 \\ 4 \\ 5 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 3 & -6 \end{bmatrix}$, verify that $(AB)' = B'A'$.

Solution We have

$$\mathbf{A} = \begin{bmatrix} -2\\4\\5 \end{bmatrix}, \mathbf{B} = \begin{bmatrix} 1 & 3 & -6 \end{bmatrix}$$

then

Now
$$A' = [-2 \ 4 \ 5], B' = \begin{bmatrix} 1 \\ 3 \\ -6 \end{bmatrix}$$

 $B'A' = \begin{bmatrix} 1 \\ 3 \\ -6 \end{bmatrix} [-2 \ 4 \ 5] = \begin{bmatrix} -2 & 4 & 5 \\ -6 & 12 & 15 \\ 12 & -24 & -30 \end{bmatrix} = (AB)'$
Clearly $(AB)' = B'A'$

 $AB = \begin{bmatrix} -2\\4\\5 \end{bmatrix} \begin{bmatrix} 1 & 3 & -6 \end{bmatrix} = \begin{bmatrix} -2 & -6 & 12\\4 & 12 & -24\\5 & 15 & -30 \end{bmatrix}$

Clearly

3.6 Symmetric and Skew Symmetric Matrices

Definition 4 A square matrix $A = [a_{ij}]$ is said to be *symmetric* if A' = A, that is, $[a_{ii}] = [a_{ii}]$ for all possible values of *i* and *j*.

For example A = $\begin{bmatrix} \sqrt{3} & 2 & 3 \\ 2 & -1.5 & -1 \\ 3 & -1 & 1 \end{bmatrix}$ is a symmetric matrix as A' = A

Definition 5 A square matrix $A = [a_{ij}]$ is said to be *skew symmetric* matrix if A' = - A, that is $a_{ji} = -a_{ij}$ for all possible values of i and j. Now, if we put i = j, we have $a_{ii} = -a_{ii}$. Therefore $2a_{ii} = 0$ or $a_{ii} = 0$ for all *i*'s.

This means that all the diagonal elements of a skew symmetric matrix are zero.

86 MATHEMATICS

For example, the matrix
$$\mathbf{B} = \begin{bmatrix} 0 & e & f \\ -e & 0 & g \\ -f & -g & 0 \end{bmatrix}$$
 is a skew symmetric matrix as $\mathbf{B'} = -\mathbf{B}$

Now, we are going to prove some results of symmetric and skew-symmetric matrices.

Theorem 1 For any square matrix A with real number entries, A + A' is a symmetric matrix and A - A' is a skew symmetric matrix. **Proof** Let B = A + A', then

$$B' = (A + A')'$$

$$= A' + (A')' (as (A + B)' = A' + B')$$

$$= A' + A (as (A')' = A)$$

$$= A + A' (as A + B = B + A)$$

$$= B$$

$$B = A + A' is a symmetric matrix$$

$$C = A - A'$$

$$C' = (A - A')' = A' - (A')' \quad (Why?)$$

$$= A' - A \quad (Why?)$$

$$= -(A - A') = -C$$

$$C = A - A' is a skew symmetric matrix.$$

Therefore

Therefore

Now let

Theorem 2 Any square matrix can be expressed as the sum of a symmetric and a skew symmetric matrix.

Proof Let A be a square matrix, then we can write

$$A = \frac{1}{2}(A + A') + \frac{1}{2}(A - A')$$

From the Theorem 1, we know that (A + A') is a symmetric matrix and (A - A') is a skew symmetric matrix. Since for any matrix A, (kA)' = kA', it follows that $\frac{1}{2}(A + A')$ is symmetric matrix and $\frac{1}{2}(A - A')$ is skew symmetric matrix. Thus, any square matrix can be expressed as the sum of a symmetric and a skew symmetric matrix. The corresponding column operation is denoted by $C_i \rightarrow C_i + kC_i$.

For example, applying
$$R_2 \rightarrow R_2 - 2R_1$$
, to $C = \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix}$, we get $\begin{bmatrix} 1 & 2 \\ 0 & -5 \end{bmatrix}$.

3.8 Invertible Matrices

Definition 6 If A is a square matrix of order *m*, and if there exists another square matrix B of the same order *m*, such that AB = BA = I, then B is called the *inverse* matrix of A and it is denoted by A^{-1} . In that case A is said to be invertible.

For example, let
$$A = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix} \text{ and } B = \begin{bmatrix} 2 & -3 \\ -1 & 2 \end{bmatrix} \text{ be two matrices.}$$
Now
$$AB = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 2 & -3 \\ -1 & 2 \end{bmatrix}$$

$$= \begin{bmatrix} 4-3 & -6+6 \\ 2-2 & -3+4 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$$
Also
$$BA = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I. \text{ Thus B is the inverse of A, in other words } B = A^{-1} \text{ and A is inverse of B, i.e., } A = B^{-1}$$

TNote

Thus

- 1. A rectangular matrix does not possess inverse matrix, since for products BA and AB to be defined and to be equal, it is necessary that matrices A and B should be square matrices of the same order.
- 2. If B is the inverse of A, then A is also the inverse of B.

Theorem 3 (Uniqueness of inverse) Inverse of a square matrix, if it exists, is unique. **Proof** Let $A = [a_{ij}]$ be a square matrix of order *m*. If possible, let B and C be two inverses of A. We shall show that B = C.

Since B is the inverse of A

$$AB = BA = I \qquad \dots (1)$$

Since C is also the inverse of A

$$AC = CA = I \qquad \dots (2)$$

$$B = BI = B (AC) = (BA) C = IC = C$$

Theorem 4 If A and B are invertible matrices of the same order, then $(AB)^{-1} = B^{-1} A^{-1}$.

2021-22