- (iii) **Existence of additive identity** Let $A = [a_{ij}]$ be an $m \times n$ matrix and O be an $m \times n$ zero matrix, then $A + O = O + A = A$. In other words, O is the additive identity for matrix addition.
- (iv) **The existence of additive inverse** Let $A = [a_{ij}]_{m \times n}$ be any matrix, then we have another matrix as $-A = [-a_{ij}]_{m \times n}$ such that $A + (-A) = (-A) + A = 0$. So – A is the additive inverse of A or negative of A.

3.4.4 *Properties of scalar multiplication of a matrix*

If $A = [a_{ij}]$ and $B = [b_{ij}]$ be two matrices of the same order, say $m \times n$, and k and l are scalars, then

(i)
$$
k(A+B) = k A + kB
$$
, (ii) $(k + l)A = k A + l A$

(ii)
$$
k(A + B) = k ([a_{ij}] + [b_{ij}])
$$

\t $= k [a_{ij} + b_{ij}] = [k (a_{ij} + b_{ij})] = [(k a_{ij}) + (k b_{ij})]$
\t $= [k a_{ij}] + [k b_{ij}] = k [a_{ij}] + k [b_{ij}] = kA + kB$

(iii)
$$
(k + l) A = (k + l) [a_{ij}]
$$

= $[(k + l) a_{ij}] + [k a_{ij}] + [l a_{ij}] = k [a_{ij}] + l [a_{ij}] = k A + l A$

Example 8 If $8 \t0 \t 2 \t-2$ $A = |4 - 2|$ and $B = |42 2$ $3 \t6$ $-5 \t1$ $\begin{bmatrix} 8 & 0 \end{bmatrix} \begin{bmatrix} 2 & -2 \end{bmatrix}$ $= 4 - 2$ and B = 422 $\begin{bmatrix} 3 & 6 \end{bmatrix}$ $\begin{bmatrix} -5 & 1 \end{bmatrix}$, then find the matrix X, such that

 $2A + 3X = 5B$.

Solution We have $2A + 3X = 5B$

or $2A + 3X - 2A = 5B - 2A$ or $2A - 2A + 3X = 5B - 2A$ (Matrix addition is commutative) or $O + 3X = 5B - 2A$ $(-2A \text{ is the additive inverse of } 2A)$

or $3X = 5B - 2A$ (O is the additive identity)

or $X =$

1 3 $(5B - 2A)$

or

$$
X = \frac{1}{3} \left[5 \begin{bmatrix} 2 & -2 \\ 4 & 2 \\ -5 & 1 \end{bmatrix} - 2 \begin{bmatrix} 8 & 0 \\ 4 & -2 \\ 3 & 6 \end{bmatrix} \right] = \frac{1}{3} \left[\begin{bmatrix} 10 & -10 \\ 20 & 10 \\ -25 & 5 \end{bmatrix} + \begin{bmatrix} -16 & 0 \\ -8 & 4 \\ -6 & -12 \end{bmatrix} \right]
$$

20. The bookshop of a particular school has 10 dozen chemistry books, 8 dozen physics books, 10 dozen economics books. Their selling prices are $\bar{\tau}$ 80, $\bar{\tau}$ 60 and $\bar{\xi}$ 40 each respectively. Find the total amount the bookshop will receive from selling all the books using matrix algebra.

Assume X, Y, Z, W and P are matrices of order $2 \times n$, $3 \times k$, $2 \times p$, $n \times 3$ and $p \times k$, respectively. Choose the correct answer in Exercises 21 and 22.

- **21.** The restriction on *n*, *k* and *p* so that PY + WY will be defined are:
	- (A) $k = 3$, $p = n$ (B) k is arbitrary, $p = 2$

(C) *p* is arbitrary, $k = 3$ (D) $k = 2, p = 3$

22. If $n = p$, then the order of the matrix $7X - 5Z$ is:

(A) $p \times 2$ (B) $2 \times n$ (C) $n \times 3$ (D) $p \times n$

3.5. Transpose of a Matrix

In this section, we shall learn about transpose of a matrix and special types of matrices such as symmetric and skew symmetric matrices.

Definition 3 If A = $[a_{ij}]$ be an $m \times n$ matrix, then the matrix obtained by interchanging the rows and columns of A is called the *transpose* of A. Transpose of the matrix A is denoted by A' or (A^T). In other words, if $A = [a_{ij}]_{m \times n}$, then $A' = [a_{ji}]_{n \times m}$. For example,

if A =
$$
\begin{bmatrix} 3 & 5 \\ \sqrt{3} & 1 \\ 0 & -1 \\ 5 & 5 \end{bmatrix}
$$
, then A' = $\begin{bmatrix} 3 & \sqrt{3} & 0 \\ 5 & 1 & -1 \\ 5 & 1 & 5 \end{bmatrix}$ _{2×3}

3.5.1 Properties of transpose of the matrices

We now state the following properties of transpose of matrices without proof. These may be verified by taking suitable examples.

For any matrices A and B of suitable orders, we have

(i) $(A')' = A$, (ii) $(kA)' = kA'$ (where *k* is any constant) (iii) $(A + B)' = A' + B'$ (iv) $(A B)' = B' A'$

Example 20 If $A = \begin{vmatrix} 3 & \sqrt{3} & 2 \\ 1 & 3 & 2 \end{vmatrix}$ and $B = \begin{vmatrix} 2 & -1 & 2 \\ 1 & 2 & 1 \end{vmatrix}$ $4 \quad 2 \quad 0 \mid \qquad 1 \quad 2 \quad 4$ $\begin{bmatrix} 3 & \sqrt{3} & 2 \end{bmatrix}$ $\begin{bmatrix} 2 & -1 & 2 \end{bmatrix}$ $=\begin{bmatrix} 5 & 8 & 2 \\ 4 & 2 & 0 \end{bmatrix}$ and $B=\begin{bmatrix} 1 & 2 & 4 \end{bmatrix}$, verify that (i) $(A')' = A$, (ii) $(A + B)' = A' + B'$,

(iii) $(kB)' = kB'$, where *k* is any constant.

84 MATHEMATICS

Solution

(i) We have

$$
A = \begin{bmatrix} 3 & \sqrt{3} & 2 \\ 4 & 2 & 0 \end{bmatrix} \Rightarrow A' = \begin{bmatrix} 3 & 4 \\ \sqrt{3} & 2 \\ 2 & 0 \end{bmatrix} \Rightarrow (A')' = \begin{bmatrix} 3 & \sqrt{3} & 2 \\ 4 & 2 & 0 \end{bmatrix} = A
$$

Thus $(A')' = A$

(ii) We have

$$
A = \begin{bmatrix} 3 & \sqrt{3} & 2 \\ 4 & 2 & 0 \end{bmatrix}, B = \begin{bmatrix} 2 & -1 & 2 \\ 1 & 2 & 4 \end{bmatrix} \Rightarrow A + B = \begin{bmatrix} 5 & \sqrt{3} - 1 & 4 \\ 5 & 4 & 4 \end{bmatrix}
$$

Therefore $(A + B)' = \begin{bmatrix} 5 & 5 \\ \sqrt{3} - 1 & 4 \\ 4 & 4 \end{bmatrix}$
Now $A' = \begin{bmatrix} 3 & 4 \\ \sqrt{3} & 2 \\ 2 & 0 \end{bmatrix}, B' = \begin{bmatrix} 2 & 1 \\ -1 & 2 \\ 2 & 4 \end{bmatrix}$,
So $A' + B' = \begin{bmatrix} 5 & 5 \\ \sqrt{3} - 1 & 4 \\ 4 & 4 \end{bmatrix}$
Thus $(A + B)' = A' + B'$

(iii) We have

$$
k\mathbf{B} = k \begin{bmatrix} 2 & -1 & 2 \\ 1 & 2 & 4 \end{bmatrix} = \begin{bmatrix} 2k & -k & 2k \\ k & 2k & 4k \end{bmatrix}
$$

Then (*k*

$$
(k\mathbf{B})' = \begin{bmatrix} 2k & k \\ -k & 2k \\ 2k & 4k \end{bmatrix} = k \begin{bmatrix} 2 & 1 \\ -1 & 2 \\ 2 & 4 \end{bmatrix} = k\mathbf{B}'
$$

Thus $(kB)' = kB'$

Example 21 If
$$
A = \begin{bmatrix} -2 \\ 4 \\ 5 \end{bmatrix}
$$
, $B = \begin{bmatrix} 1 & 3 & -6 \end{bmatrix}$, verify that $(AB)' = B'A'$.

Solution We have

$$
A = \begin{bmatrix} -2 \\ 4 \\ 5 \end{bmatrix}, B = \begin{bmatrix} 1 & 3 & -6 \end{bmatrix}
$$

 $4 \begin{vmatrix} 1 & 3 & -6 \\ 1 & 1 & 3 \end{vmatrix}$

 $\begin{vmatrix} 4 & 1 & 3 & - \end{vmatrix}$

2

 $\lceil -2 \rceil$

5

 $\begin{bmatrix} 5 \end{bmatrix}$

then $AB = | 4 | [1 \ 3 \ -6]$

Now

Now
\n
$$
A' = [-2 \ 4 \ 5], \ B' = \begin{bmatrix} 1 \\ 3 \\ -6 \end{bmatrix}
$$

\n $B'A' = \begin{bmatrix} 1 \\ 3 \\ -6 \end{bmatrix} [-2 \begin{bmatrix} -2 \\ 4 \\ 5 \end{bmatrix}] = \begin{bmatrix} -2 \ 4 \\ -6 \end{bmatrix}$
\nClearly
\n $(AB)' = B'A'$
\n $(AB)' = B'A'$

=

2 -6 12 4 $12 -24$ 5 $15 -30$

 $\begin{bmatrix} -2 & -6 & 12 \end{bmatrix}$ $\begin{vmatrix} 4 & 12 & -24 \end{vmatrix}$ $\begin{bmatrix} 5 & 15 & -30 \end{bmatrix}$

3.6 Symmetric and Skew Symmetric Matrices

Definition 4 A square matrix $A = [a_{ij}]$ is said to be *symmetric* if $A' = A$, that is, $[a_{ij}] = [a_{ij}]$ for all possible values of *i* and *j*.

For example 3 2 3 $A = | 2 -1.5 -1$ $3 -1 1$ $\lceil \sqrt{3} \rceil$ 2 3 $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ $= | 2 -1.5 -1 |$ $\begin{bmatrix} 3 & -1 & 1 \end{bmatrix}$ is a symmetric matrix as $A' = A$

Definition 5 A square matrix $A = [a_{ij}]$ is said to be *skew symmetric* matrix if $A' = -A$, that is $a_{ii} = -a_{ii}$ for all possible values of *i* and *j*. Now, if we put $i = j$, we have $a_{ii} = -a_{ii}$. Therefore $2a_{ii} = 0$ or $a_{ii} = 0$ for all *i*'s.

This means that all the diagonal elements of a skew symmetric matrix are zero.

86 MATHEMATICS

For example, the matrix
$$
B = \begin{bmatrix} 0 & e & f \\ -e & 0 & g \\ -f & -g & 0 \end{bmatrix}
$$
 is a skew symmetric matrix as $B' = -B$

Now, we are going to prove some results of symmetric and skew-symmetric matrices.

Theorem 1 For any square matrix A with real number entries, $A + A'$ is a symmetric matrix and $A - A'$ is a skew symmetric matrix. **Proof** Let $B = A + A'$, then

$$
B' = (A + A')'
$$

= A' + (A')' (as (A + B)' = A' + B')
= A' + A (as (A')' = A)
= A + A' (as A + B = B + A)
= B
B = A + A' is a symmetric matrix
C = A - A'
C' = (A - A')' = A' - (A')' (Why?)
= A' - A (Why?)
= -(A - A') = - C
C = A - A' is a skew symmetric matrix.

Therefore

Therefore

Now let

Theorem 2 Any square matrix can be expressed as the sum of a symmetric and a skew symmetric matrix.

Proof Let A be a square matrix, then we can write

$$
A = \frac{1}{2}(A + A') + \frac{1}{2}(A - A')
$$

From the Theorem 1, we know that $(A + A')$ is a symmetric matrix and $(A - A')$ is a skew symmetric matrix. Since for any matrix A, (*k*A)′ = *k*A′, it follows that $\frac{1}{2}(A + A')$ 2 $+A'$ is symmetric matrix and $\frac{1}{2} (A - A')$ 2 $-A'$) is skew symmetric matrix. Thus, any square matrix can be expressed as the sum of a symmetric and a skew symmetric matrix.

The corresponding column operation is denoted by $C_i \rightarrow C_i + kC_j$.

For example, applying
$$
R_2 \to R_2 - 2R_1
$$
, to $C = \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix}$, we get $\begin{bmatrix} 1 & 2 \\ 0 & -5 \end{bmatrix}$.

3.8 Invertible Matrices

Definition 6 If A is a square matrix of order *m*, and if there exists another square matrix B of the same order m , such that $AB = BA = I$, then B is called the *inverse* matrix of A and it is denoted by A^{-1} . In that case A is said to be invertible.

For example, let
$$
A = \begin{bmatrix} 2 & 3 \ 1 & 2 \end{bmatrix}
$$
 and $B = \begin{bmatrix} 2 & -3 \ -1 & 2 \end{bmatrix}$ be two matrices.
\nNow $AB = \begin{bmatrix} 2 & 3 \ 1 & 2 \end{bmatrix} \begin{bmatrix} 2 & -3 \ -1 & 2 \end{bmatrix}$
\n $= \begin{bmatrix} 4-3 & -6+6 \ 2-2 & -3+4 \end{bmatrix} = \begin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix} = I$
\nAlso $BA = \begin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix} = I$. Thus B is the inverse of A, in other words $B = A^{-1}$ and A is inverse of B, i.e., $A = B^{-1}$

A**Note**

- 1. A rectangular matrix does not possess inverse matrix, since for products BA and AB to be defined and to be equal, it is necessary that matrices A and B should be square matrices of the same order.
- 2. If B is the inverse of A, then A is also the inverse of B.

Theorem 3 (Uniqueness of inverse) Inverse of a square matrix, if it exists, is unique. **Proof** Let $A = [a_{ij}]$ be a square matrix of order *m*. If possible, let B and C be two inverses of A. We shall show that $B = C$.

Since B is the inverse of A

$$
AB = BA = I \tag{1}
$$

Since C is also the inverse of A

$$
AC = CA = I \qquad \dots (2)
$$

Thus
$$
B = BI = B (AC) = (BA) C = IC = C
$$

Theorem 4 If A and B are invertible matrices of the same order, then $(AB)^{-1} = B^{-1}A^{-1}$.